Manual for 8 Channel PPM Encoder (v2), Firmware: v2.3.16

Written by Julian Oes, 03/01/2013

Table of Contents
L0701 (=Y 0| 1= RSP RRRPRPR 1
L0 Y= = RSP 1
ACKNOWIBAGMENT. ...ttt ekt e et e e bt e e e b et e e b et e e s b et e e nb e e e eb bt e e e e e e e s aannnnnr e e e e aeeeens 1
1S T] (o L= oo RSO RPTE 2
LA T RSP 2
1Y (oo (=T TSP PSPPSR PPPON 3
N [0 0 2 =10 Yo 1SRt 3
Radio Passtnrough MOAE (MUX)......ceieiieiiiiieiieetee et e e e e s e e e e e e e e e e e e e e e aaaaaaaaaaees 3
=T T (= TSP P TSRO PPPPPPPPPPN 4
8| S T (o T=T N TW 44T =Y S 4
Updating firmware / ReprogramiMing........c.o . eieoieeaiieiaeiieeeaieeaesiteeesteeeasseeessseeesaseeassaseeeaasseeesasseeaannnsseeeesaaasssaanns 4
Overview

The PPM encoder allows to encode up to 8 PWM (pulse width modulated) signals into one PPM (pulse pause
modulated) signal. This allows you to use any R/C receiver and a microcontroller that supports PPM (e.g. the
PX4FMU).

The design is based on the Atmega328P using and an external 16Mhz resonator.

By default negative pulse PPM is encoded. In order to change to positive pulse PPM, the firmware needs to be
changed, compiled and reprogrammed as explained in the wiki.

Acknowledgment

The hardware design was originally based on the Atmega PPM Encoder Board by Paparazzi.

The PPM Encoder now uses the ArduPPM firmware, replacing the previously used Paparazzi PPM Encoder
firmware. The new ArduPPM firmware has been designed from scratch to enhance performance and robustness,
and to better accommodate our product needs now and in the future.

It has been written by John Arne and Olivier Adler and is available in the ardupilot repository and licensed under
the GNU GPL v3.

http://pixhawk.ethz.ch/px4/modules/px4fmu
http://www.gnu.org/licenses/gpl.html
http://paparazzi.enac.fr/wiki/ATmega_PPM_Encoder_Board
http://code.google.com/p/ardupilot-mega/wiki/Encoder

Soldering

Use a 3x8 right angle pin header for the PWM connections and a 3x1 right angle pin header for the PPM
connection (or a 3x2 right angle pin if mux connection is needed).

Wiring

s
ok *
ern
wh
‘aah
" ga R
.'3:»
X

Connect the PWM signals coming from your receiver to the inputs. The “S+-" next to the pins indicates the
polarity.
Make sure you use the channel assignments as shown below (details here)

Channel 1 Roll

Channel 2 Pitch

Channel 3 Throttle

Channel 4 Yaw

Channel 5 ... (Default ArduCopter: Flight Mode)
Channel 6

Channel 7

Channel 8 ... (Default ArduPlane: Flight mode)

Please note that throttle must be on channel 3 in order for the failsafe to work properly!

http://code.google.com/p/arducopter/wiki/AC2_First

Either connect every channel separately using servo jumper cables:

Modes

Carefully check that your radio system is working flawlessly before flying.
If you see the blue status LED blinking very fast almost continuously this is an indication that something is wrong
in the decoding.

Normal mode

The blue LED is used for status reports :
« slow to fast blinking according to throttle channel position
» very fast blinking if servo all channels have been lost, or if the throttle channel (ch3) has been lost

Radio Passthrough mode (mux)

This feature is only available, when the PPM Encoder for ArduPlane firmware is used:
- e. g. ArduPPM_v2.3.16_ATMega328p_for_ArduPlane.hex

This mode is described as hardware failsafe in ArduPlane terminology.
Radio Passthrough mode is trigged when servo channel 8 > 1800 ps.

When the passthrough mode is active, the Mux output on JP5 is enabled, so that an external bypass circuit can
be switched on.

The blue LED has different behaviors in passthrough mode:
» If throttle position < 1200 pus, status LED is off
» If throttle position > 1200 ps, status LED is on

http://store.diydrones.com/Servo_Jumper_Female_double_sided_5_cm_p/pr-0003-03-5cm.htm
http://store.diydrones.com/Jumper_cable_two_pin_female_15cm_p/ca-0001-11.htm
http://store.diydrones.com/Jumper_cable_5_pin_to_5_pin_female_15cm_p/ca-0001-50.htm
http://store.diydrones.com/Jumper_cable_two_pin_female_15cm_p/ca-0001-10.htm

Fail-safe

« If areceiver servo channel is lost, the behaviour depends on the channel:

Channel 1 Roll Set to center (1500 ps)
Channel 2 Pitch Set to center (1500 ps)
Channel 3 Throttle Set to low (900 ps)
Channel 4 Yaw Set to center (1500 ps)
Channel 5 Remain at last value
Channel 6 Remain at last value
Channel 7 Remain at last value
Channel 8 Remain at last value

» If all channels are lost or the throttle channel is lost, the throttle signal will be set to low (900 ps) and this
is an indication for the ArduCopter/ArduPlane/ArduRover software that something went wrong.
Depending on the settings and parameters, this might initiate a fail-safe scenario like RTL.

Before flying make sure to setup and test the fail-safe (see wiki for ArduCopter and ArduPlane).

JP1 Solder Jumper

The jumper JP1 has been included to provide some flexibility in the way you power the receiver, servos and PPM
Encoder. In standard it is connected, solder is applied.

JP1in place: The +5 Volts from the receiver and the PPM output are connected. The receiver will draw
the power from whatever autopilot board is attached to the PPM output.
(standard setup)
JP1 removed: The +5 Volts from the Servos and the PPM output are separated.
The receiver needs an separate power source.
Note that failure to remove JP1 can damage the autopilot's +5v switching regulator when too much current is
drawn.

Updating firmware / Reprogramming

The PPM Encoder comes with the PPM encoder firmware pre-programmed, and most users will never need or
want to modify it.

However, some users may want to get into the code to change the way the PPM Encoder interprets RC signals
or may want to update to the latest version.

Some rare users did report receiver compatility problems with the old version (before ArduPPM). For most
cases, ArduPPM did solve them.

Instructions on how to flash a new firmware can be found in the wiki.

http://code.google.com/p/ardupilot-mega/wiki/Encoder
http://code.google.com/p/ardupilot-mega/wiki/Failsafe
http://code.google.com/p/arducopter/wiki/AC2_Failsafe

	Overview
	Acknowledgment
	Soldering
	Wiring
	Modes
	Normal mode
	Radio Passthrough mode (mux)
	Fail-safe

	JP1 Solder Jumper
	Updating firmware / Reprogramming

